Relative Pseudomonads, Kleisli Bicategories, and Substitution Monoidal Structures

نویسندگان

  • M. FIORE
  • N. GAMBINO
  • M. HYLAND
  • G. WINSKEL
چکیده

We introduce the notion of a relative pseudomonad, which generalizes the notion of a pseudomonad, and define the Kleisli bicategory associated to a relative pseudomonad. We then present an efficient method to define pseudomonads on the Kleisli bicategory of a relative pseudomonad. The results are applied to define several pseudomonads on the bicategory of profunctors in an homogeneous way, thus providing a uniform approach to the definition of bicategories that are of interest in operad theory, mathematical logic, and theoretical computer science.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifying Spaces for Braided Monoidal Categories and Lax Diagrams of Bicategories

This work contributes to clarifying several relationships between certain higher categorical structures and the homotopy type of their classifying spaces. Bicategories (in particular monoidal categories) have well understood simple geometric realizations, and we here deal with homotopy types represented by lax diagrams of bicategories, that is, lax functors to the tricategory of bicategories. I...

متن کامل

An Alternative Description of Braided Monoidal Categories

We give an alternative presentation of braided monoidal categories. Instead of the usual associativity and braiding we have just one constraint (the b-structure). In the unital case, the coherence conditions for a b-structure are shown to be equivalent to the usual associativity, unit and braiding axioms. We also discuss the next dimensional version, that is, b-structures on bicategories. As an...

متن کامل

Exponential Kleisli Monoids as Eilenberg-Moore Algebras

Lax monoidal powerset-enriched monads yield a monoidal structure on the category of monoids in the Kleisli category of a monad. Exponentiable objects in this category are identified as those Kleisli monoids with algebraic structure. This result generalizes the classical identification of exponentiable topological spaces as those whose lattice of open subsets forms a continuous lattice.

متن کامل

Applications of the Kleisli and Eilenberg-Moore 2-adjunctions

In 2010, J. Climent Vidal and J. Soliveres Tur developed, among other things, a pair of 2-adjunctions between the 2-category of adjunctions and the 2-category of monads. One is related to the Kleisli adjunction and the other to the Eilenberg-Moore adjunction for a given monad.Since any 2-adjunction induces certain natural isomorphisms of categories, these can be used to classify bijection...

متن کامل

The Monoidal Structure of Strictification

We study the monoidal structure of the standard strictification functor st : Bicat → 2Cat. In doing so, we construct monoidal structures on the 2-category whose objects are bicategories and on the 2-category whose objects are 2-categories.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016